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a b s t r a c t

An explicit finite volume model to simulate two-dimensional shallow water flow with
multi-component transport is presented. The governing system of coupled conservation
laws demands numerical techniques to avoid unrealistic values of the transported scalars
that cannot be avoided by decreasing the size of the time step. The presence of non conser-
vative products such as bed slope and friction terms, and other source terms like diffusion
and reaction, can make necessary the reduction of the time step given by the Courant num-
ber. A suitable flux difference redistribution that prevents instability and ensures conser-
vation at all times is used to deal with the non-conservative terms and becomes
necessary in cases of transient boundaries over dry bed. The resulting method belongs to
the category of well-balanced Roe schemes and is able to handle steady cases with flow
in motion. Test cases with exact solution, including transient boundaries, bed slope, fric-
tion, and reaction terms are used to validate the numerical scheme. Laboratory experi-
ments are used to validate the techniques when dealing with complex systems as the
j—� model. The results of the proposed numerical schemes are compared with the ones
obtained when using uncoupled formulations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

There is a significant interest in the description of the transport of dissolved chemical species into natural waters caused
by the discharge of agricultural, industrial and domestic effluents but also of the transport of nutrients involved in biological
processes. Also, it is of primary importance the interaction with the soil, as the possible transfer of chemical agents between
surface water and soil can cause potential threat to the quality of the environment. These processes are not only susceptible
to continuous variations in the incorporation of chemical agents in time, they also depend on the variation of the transfer-
ence area in flooding events, where it is also of importance the recession part where the dissolved chemicals stored in ponds
can affect the biological quality of the inundation areas or indirectly reach groundwaters.
. All rights reserved.
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When evaluating real flows in rivers the cost of the non-simplified three-dimensional numerical methods can be avoided
using depth integrated models, as water in rivers and estuaries are usually well-mixed and flows are pressure-driven, so the
dissolved chemicals are generally distributed uniformly over a water column.

The development of robust and efficient explicit finite volume models of shallow water flow has been the matter of recent
research in the computational hydraulics literature. A few efforts have been reported on the search for the best methods able
to preserve the exact conservation property (C-property) [29] in presence of flow over irregular geometries [4,17]. Under-
standing that other processes, like that of pollutant transport, are determined by the characteristics of the fluid flow, the
shallow water model has been accepted as the basis for the development of more ambitious environmental or hydraulic
models. For many applications, the standard advection–diffusion equation has been used to model the dynamics of a trans-
ported scalar together with the shallow water equations for the hydrodynamic variables [24]. Extensions of the numerical
models to ensure the correct resolution of the enlarged system of equations have followed different approaches. Several
authors [2,7,10] report on the use of the uncoupled system of equations whereas others [3,6,15] consider the convenience
of solving the shallow water and the transport equations in coupled form to deal with steady and unsteady flow even in pres-
ence of discontinuities of both solute concentration and water depth. Considering that the conserved quantity is the solute
volume and not the solute concentration, the coupled formulation of the system and the use of an extended Jacobian matrix
to develop the flux difference splitting is not always a sufficient condition in complex cases, as demonstrated in [16], in order
to ensure conservation and the required positivity in the concentrations.

When dealing with simulation problems that involve bed variations and transient flow over a dry bed, these flow features
impose a heavier restriction than the classical Courant–Friedrichs–Lewy (CFL) condition [8,14,28] on the time step size that
may lead to inefficient computations. It is possible to avoid the necessity of reducing the time step and, at the same time, to
prevent instability and to ensure conservation at all times by a suitable flux difference redistribution [17].

When moving to more complex applications that require the transport and reaction of diverse scalar magnitudes (mass
concentration, energy, etc.) in complex geometries, the numerical schemes must be carefully formulated to ensure at the
same time conservation, stability and accuracy of the results. For that reason, an effort can be made to extend the method
based on the coupled formulation, the control on the positivity of the scalars transported and the redistribution of the fluxes
that recovers the maximum time step for multivariable transport. The interest in modelling biological processes in new stor-
age areas with dissolved chemicals and nutrients, during and after flooding events, with not extremely time consuming ef-
fort, justify this analysis.

This work will present a formulation of the governing equations of a general 2D shallow water flow with multivariable
transport involving diffusion and reaction. Then, first and second order finite volume schemes, already tested in simpler sim-
ulations [15,18], will be outlined and extended for the simulation of the defined system of equations. Extension to second
order on triangular grids can be formulated for instance by means of the MUSCL-Hancock scheme [2,27]. The gradient slope
limitation used in this work in combination with the MUSCL-Hancock scheme has been used in order to follow previous
numerical works dealing with second order limitation on triangular unstructured grids. Flux or slope limiting functions de-
fined in one-dimensional problems in order to ensure the TVD property on numerical solutions do not ensure this property in
two-dimensional problems except in certain trivial cases [12]. Positively conservative schemes specially designed for
unstructured grids have been widely reported [1,31].

The emphasis will be put on the necessity to perform a systematic control over the positivity of the concentrations of the
transported components always additional to the required C-property. Furthermore, a conservative flux redistribution, pre-
viously proposed for shallow water flows with a single component [17], to avoid excessive time step reduction will be gen-
eralized to the more complex situation. As a first application, the modelling of the purely advective transport of three
mutually independent components in a two-dimensional unsteady flow over dry bed will be presented and compared to
the analytical solution. Then, the simulation of a two-component system with reaction terms is considered. Examples with
analytical solution have been selected in order to emphasize the main features of the numerical solution achieved with dif-
ferent techniques. The reaction term is considered as a new source term.

The depth average j—� model, widely used in environmental applications, has been used as an example of more sophis-
ticated formulations in which the transported variables affect the flow evolution. Two laboratory test cases with experimen-
tal data have been selected in order to validate the numerical approaches.

2. Governing equations

The solute transport and water flow under shallow conditions can be formulated by means of the depth averaged set of
equations expressing water volume conservation, solute volume conservation and water momentum conservation. That sys-
tem of partial differential equations will be formulated here in coupled form as follows:
@U
@t
þ @FðUÞ

@x
þ @GðUÞ

@y
¼ SðUÞ þ RðUÞ þ ~rDðUÞ ð1Þ
where
U ¼ ð h qx qy h/1 h/2 � � � h/p ÞT ð2Þ
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are the conserved variables with h representing the water depth, qx ¼ hu and qy ¼ hv , with ðu;vÞ the depth averaged com-
ponents of the velocity vector u along the x and y coordinates, respectively, and /1;/2; . . . ;/p represent the scalar depth aver-
aged concentration of the different quantities transported. The fluxes of these variables are given by:
F ¼ qx
q2

x
h þ 1

2 gh2 qxqy

h qx/1 qx/2 � � � qx/p

� �T

G ¼ qy
qxqy

h
q2

y

h þ 1
2 gh2 qy/1 qy/2 � � � qy/p

� �T
ð3Þ
where g is the acceleration of the gravity. The source terms of the system are split in three kinds of terms. The bed slope and
friction source terms of the momentum equations:
S ¼ 0 ghðSox � SfxÞ ghðSoy � SfyÞ 0 0 � � � 0
� �T ð4Þ
where the bed slopes of the bottom level z are
Sox ¼ �
@z
@x
; Soy ¼ �

@z
@y

ð5Þ
and the friction losses are written in terms of the Manning’s roughness coefficient n:
Sfx ¼
n2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

h4=3 ; Sfy ¼
n2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

h4=3 ð6Þ
We will assume that the reaction source terms R will be defined by every particular application.
The diffusion terms are based on the following formulation:
D ¼ 0 Kuh~ru Kvh~rv K1h~r/1 K2h~r/2 � � � Kph~r/p

� �T
ð7Þ
where each K is an empirical dispersion matrix. The particular form of the matrix elements will be detailed in the applica-
tions section.

System (1) is time dependent, non linear, and contains advection, diffusion, reaction and source terms. Under the hypoth-
esis of dominant advection it can be classified and numerically dealt with as belonging to the family of hyperbolic systems.
The mathematical properties of (1) include the existence of a Jacobian matrix, Jn, of the normal flux En, with En ¼ Fnx þ Gny,
defined as
Jn ¼
@En
@U
¼ @F
@U

nx þ
@G
@U

ny ð8Þ
This Jacobian can be used to form the basis of the upwind numerical discretization that will be outlined in next section.

3. Finite volume model

To introduce the finite volume scheme, (1) is integrated in a volume or grid cell X:
@

@t

Z
X

UdXþ
Z

X
ð~rEÞdX ¼

Z
X

SdXþ
Z

X
R dXþ

Z
X
ð~rDÞdX ð9Þ
Following previous work, it is assumed that the third integral can be reformulated as [30]
Z
X

SdX ¼
I
@X
ðTnÞdl ð10Þ
where T is a suitable numerical source matrix. This enables the following formulation
@

@t

Z
X

UdXþ
I
@X

Endl ¼
I
@X

Tndlþ
I
@X
ðDnÞdlþ

Z
X

R dX ð11Þ
When the domain is sub-divided in cells Xi (see Fig. 1), using a mesh fixed in time, (11) can also be applied to each cell:
@

@t

Z
X

Ui dXi þ
XNE

k¼1

Z ekþ1

ek

Ejnk dlk ¼
XNE

k¼1

Z ekþ1

ek

Tknk dlk þ
XNE

k¼1

Z ekþ1

ek

Dknk dlk þ
Z

X
R dX ð12Þ
where nk ¼ ðnx;nyÞ, is the outward unit normal vector to the cell edge k; j is a neigbouring cell of i connected through the
edge k; Ej is the function E at the neighbour cell j; lk is the corresponding edge length, NE is the number of edges in the cell
and Tk and Dk to be defined. Eq. (12) can be written as
@

@t

Z
X

Ui dXi þ
XNE

k¼1

Z ekþ1

ek

dEknk dlk þ
XNE

k¼1

Z ekþ1

ek

Eink dlk ¼
XNE

k¼1

Z ekþ1

ek

Tknk dlk þ
XNE

k¼1

Z ekþ1

ek

Dknk dlk þ
Z

X
R dX ð13Þ
where dEk ¼ Ej � Ei, with Ej and Ei the function E at cells j and i, respectively.



Fig. 1. Cell parameters.
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3.1. First order scheme

In first order the vector quantities are uniform per cell (Fig. 2). Using this together with the following geometric
relationship
XNE

k¼1

nklk ¼ 0 ð14Þ
and approaching the reaction term as
Z
X

R dX ¼ RiAi ð15Þ
with uniform values for Tk and Dk in each edge, (11) reduces to
ðUnþ1
i � Un

i Þ
Dt

Ai þ
XNE

k¼1

ðdE� TÞknklk ¼
XNE

k¼1

Dknklk þ RiAi ð16Þ
with Ai the area of cell Xi.
Due to the non-linear character of the flux E, the definition of an approximated Jacobian matrix, eJn;k, allows for a local Roe

type linearization and is exploited here [22]. This approach provides a set of 3þ p real eigenvalues ~km
k and eigenvectors ~em

k ,
constructed with the following averaged variables
~uk ¼
ui

ffiffiffiffi
hi

p
þ uj

ffiffiffiffi
hj

pffiffiffiffi
hi

p
þ

ffiffiffiffi
hj

p ; ~vk ¼
v i

ffiffiffiffi
hi

p
þ v j

ffiffiffiffi
hj

pffiffiffiffi
hi

p
þ

ffiffiffiffi
hj

p ; ~ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

hi þ hj

2

r

~/1 ¼
/1;j

ffiffiffiffi
hi

p
þ /1;i

ffiffiffiffi
hj

pffiffiffiffi
hi

p
þ

ffiffiffiffi
hj

p ; . . . ; ~/p ¼
/p;j

ffiffiffiffi
hi

p
þ /p;i

ffiffiffiffi
hj

pffiffiffiffi
hi

p
þ

ffiffiffiffi
hj

p ð17Þ
leading to
~k1
k ¼ ð~unþ ~cÞk; ~k2

k ¼ ð~unÞk; ~k3
k ¼ ð~un� ~cÞk

~k4
k ¼ ~k5

k ¼ � � � ¼ ~k3þp
k ¼ ð~unÞk

ð18Þ
Fig. 2. Piecewise constant representation of the variable U.
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and
~e1
k ¼

1
~uþ ~cnx

~v þ ~cny

~/1

~/2

� � �
~/p

0BBBBBBBBBBB@

1CCCCCCCCCCCA
k

; ~e2
k ¼

1
�~cny

�~cnx

0
0
� � �
0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
k

; ~e3
k ¼

1
~u� ~cnx

~v � ~cnyf/1f/2

� � �
~/p

0BBBBBBBBBBB@

1CCCCCCCCCCCA
k

~e4
k ¼

0
0
0
1
0
� � �
0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
k

; ~e5
k ¼

0
0
0
0
1
� � �
0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
k

; . . . ; ~e3þp
k ¼

0
0
0
0
0
� � �
1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
k

ð19Þ
Matrices ePk, and eP�1
k , can be built using the eigenvectors ~em

k of eJn;k so that they diagonalize it
eJn;k ¼ ðeP eKeP�1Þk; ePk ¼ ~e1
k

~e2
k

~e3
k

~e4
k

~e5
k � � � ee3þp

k

� �
ð20Þ
where eK is the diagonal eigenvalues ekm
k matrix. Also, from the approximate Jacobian [22]
eJn;k~em

k ¼ ~km
k

~em
k ; m ¼ 1;2;3; . . . ;3þ p ð21Þ
The problem can be reduced to a one-dimensional Riemann problem projected onto the direction n at each cell edge [11].
Following a flux difference procedure, the difference in vector U across the grid edge is projected onto the matrix eigenvec-
tors basis
dUk ¼
X3þp

m¼1

ða~eÞmk ð22Þ
where the expression of coefficients ak are:
a1;3
k ¼

dhk

2
� 1

2~ck
ðdqk � ~ukdhkÞnk; a2

k ¼
1
~ck
ðdqk � ~ukdhkÞnT;k

a4
k ¼ dðh/1Þk � ð~/1dhÞk

a5
k ¼ dðh/2Þk � ð~/2dhÞk; . . . ; a3þp

k ¼ dðh/pÞk � ð~/pdhÞk

ð23Þ
with nT;k ¼ ð�ny;nxÞ. The dðEnÞk contributions at a cell edge k can be written as:
dðEnÞk ¼
X3þp

m¼1

ð~ka~eÞmk ð24Þ
Following the unified discretization in [5] the non-conservative term ðTnÞk at a cell edge is written
ðTnÞk ¼ 0 �g~hðdzþ dnSf Þnx �g~hðdzþ dnSf Þny 0 0 � � � 0
� �T

k
ð25Þ
with the discretization of the friction term based on [19]
Sf ;k ¼
n2 ~unj~ujdn

maxðhi;hjÞ4=3

 !
k

ð26Þ
where dn is the distance between cell centroids sharing edge k projected onto the n direction as displayed in Fig. 3.
Both the bed slope and the friction term can be split onto the basis of eigenvectors in order to enforce the discrete

equilibrium with the flux derivative terms (24), so (C-property) is ensured in steady cases with nil and not nil velocity
[19,23]:
ðTnÞk ¼ ePkBk ¼
X3þp

m¼1

ðbm~emÞk ð27Þ
with Bk ¼ ðb1 b2 b3 b4 b5 � � � b3þp ÞTk . The coefficients are



Fig. 3. Normal distance dn between two cells.
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b1;3
k ¼ �

~ck

2
ðdzþ dnSf Þk; b2

k ¼ 0

b4
k ¼ b5

k ¼ � � � ¼ b3þp
k ¼ 0

ð28Þ
The explicit first order upwind scheme for the non-diffusive and non-reacting part of (16) gets the form:
U�i ¼ Un
i þ Dt

XNE

k¼1

Wn
i;k ð29Þ
expressed as sum of each edge contribution, Wi;k
Wi;k ¼
X3þp

m¼1

ðð~k�a� b�Þ~eÞmk lk=Ai ð30Þ
where ~k� ¼ 1
2 ð~k� j~kjÞ and b� ¼ 1

2 ð1� signð~kÞÞb. The value in (29) provides a predicted value of the solution of the non-diffu-
sive and non-reacting system, and then, the reaction terms can be simply added using a first order approach
U��i ¼ U�i þ DtR�i ð31Þ
with R�i ¼ RðU�i Þ ¼ ð0 0 0 R�1 R�2 � � � R�p ÞTi , that can be evaluated explicitly
R�s ¼
minfR�s ;U

�
3þsDt�1g if R�s < 0

R�s if R�s > 0

(
ð32Þ
for s ¼ 1; . . . ; p. Otherwise, it can be evaluated implicitly only in the case R�s < 0
U��3þs ¼ U�3þs 1� R�sDt
U�3þs

� ��1

ð33Þ
Finally the solution including also the diffusive terms is
Unþ1
i ¼ U��i þ DtDnþ1

i ð34Þ
The final value including diffusion is computed by means of an implicit method over the diffusion term in a second step [15].
The numerical diffusion step becomes unconditionally stable, as the resolution matrix is positive defined.

3.2. Second order scheme

The spatial discrete representation of the functions can be improved using information of the neighbour cells. The recon-
struction functions can be defined as piecewise linear representations in the cells so that the scheme becomes a second order
in space approximation [13]. As the cell representation function must be unique to preserve conservation, the techniques
described in this section can only be applied to triangular cells because the number of edges in which stability conditions
are required cannot exceed the number of points used to define the representation function itself [11].

The piecewise linear reconstruction of a scalar variable U, over an element i with centroid at ðxo; yoÞ is expressed as
Uiðx; yÞ ¼ Ui;o þ rðx; yÞLU;i ð35Þ
where r is the position vector from the centroid, and L is the cell slope. Using (14) the advective part of (13) can be formu-
lated as:
XNE

k¼1

ðdEÞJI;knklk þ
XNE

k¼1

ðdEÞIi;knklk ð36Þ
while the non-conservative product in (13) is formulated as:
XNE

k¼1

ðTÞJI;knklk þ
XNE

k¼1

ðTÞIi;knklk ð37Þ



Fig. 4. Linear representation by cells.
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with dEJI;k ¼ EJ;k � EI;k, where EJ;k and EI;k are computed evaluating the conserved variables U at the corresponding middle-
edge position and plane (Fig. 4), dEIi;k ¼ EI;k � Ei;k and
UI;k ¼ Ui;o þ ri;kLU;i; UJ;k ¼ Uj;o þ rj;kLU;j

ri;k ¼
1
2
ðri;ek

þ ri;ekþ1
Þ; rj;k ¼

1
2
ðrj;ek

þ rj;ekþ1
Þ

ð38Þ
It must be remarked that the linear reconstruction must be done ensuring
Umin
k 6 UJ;k 6 Umax

k ; Umin
k 6 UI;k 6 Umax

k ð39Þ
where Umin
k ¼ minðUi;o;Uj;oÞ and Umax

k ¼maxðUi;o;Uj;oÞ. Different forms to define the cell slope can be formulated [1,11,17,31].
Then, the second order in space approach can be defined as
U�i � Un
i

� �
Dt

Ai þ
XNE

k¼1

ðdE� TÞJI;knklk þ
XNE

k¼1

ðdE� TÞIi;knklk ¼ 0 ð40Þ
To be numerically stable, it is necessary to move to second order in time and space, using, for instance, a two-step method
(MUSCL-Hancock) [27]:
Unþ1=2
I;k ¼ Un

i þ
Dt
2

XNE

k¼1

Wn
Ii;k

U�i ¼ Un
i þ Dt

XNE

k¼1

Wnþ1=2
JI;k þ Dt

XNE

k¼1

Wnþ1=2
Ii;k

ð41Þ
with WJI;k ¼
P3þp

m¼1ðð~k�a� b�Þ~eÞmJI;klk=Ai where
b1;3
JI;k ¼ �

~cJI;k

2
ðdzJI;k þ dnSJI;kÞ; b2

JI;k ¼ 0

b4
JI;k ¼ b5

IJI;k ¼ � � � ¼ b3þp
JI;k ¼ 0

ð42Þ
and WIi;k ¼
P3þp

m¼1ðð~ka� bÞ~eÞmIi;klk=Ai where
b1;3
Ii;k ¼ �

~cIi;k

2
ðdzIi;kÞ; b2

Ii;k ¼ 0

b4
Ii;k ¼ b5

Ii;k ¼ � � � ¼ b3þp
Ii;k ¼ 0

ð43Þ
Special care is necessary when defining the interpolation planes involving the source terms. In this case the adequate
interpolation plane for the conserved variable h is the water level surface, hþ z [17], ensuring the required C-property in
second order approach. The empirical Manning friction formula applied cannot be transformed into a linear space variation
over the cell. Then, for simplicity, when second order is imposed the friction term SIi;k is considered nil. The reactive source
terms would be structured as in Eqs. (31)–(33). Also, the diffusive part can be solved in a final step as indicated in Eq. (34).

3.3. Multi-component transport constraints

In the algorithms formulated in Eqs. (29) and (41) for the coupled system the conserved variable in the mass conservation
equation of every transported component is h/s so that the final value of solute concentration /s is computed as a ratio be-
tween the conserved solute mass and the water depth. This can lead to unbounded and unrealistic concentration values in
some complex cases with important relative water depth variations, with independence of the time step size used. This was
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identified in [18] and a conservative redistribution of the solute mass fluxes was presented. The proposal in the present work
is to apply the same idea to each transported scalar in the set of equations. For clarity, it is convenient to define the cell edge
flux as
Table 1
Summa

Case

1
2
3
4
5
6
7
8
9
10
Wi;k ¼ Wh
i;k Whu

i;k Whv
i;k Wh/1

i;k Wh/2
i;k � � � W

h/p

i;k

� �T
ð44Þ
The procedure is based in the definition of a virtual solute concentration /v for each s transported variable at each cell edge
between cells i and j for s ¼ 1; . . . ; p.
/v ¼
maxf/s;i;/s;jg; if d/nþ1

s;k < 0 and Wh
i;k < 0 and ~k3þs;�

i;k ¼ 0

minf/s;i;/s;jg; if d/nþ1
s;k > 0 and Wh

i;k < 0 and ~k3þs;�
i;k ¼ 0

~/s;k; otherwise

8>><>>: ð45Þ
with d/n
s;k ¼ /n

s;j � /n
s;i, so that, in general, the solute mass flux updating cell i coming from edge k; Wh/s

i;k , and that updating cell
j coming from the same edge interface, Wh/s

j;k , are redefined as:
Wh/s
i;k ¼ /vW

h
i;k

Wh/s
j;k ¼ Wh/s

j;k þ ð~/s;k � /vÞWh
i;krA

ð46Þ
with rA ¼ Ai=Aj, to preserve conservation.
The flux correction in (46) is necessary even if no source terms are present. But when friction and bed slope terms are

included another source of numerical oscillations may arise in the case of mixed/clean fronts over irregular domains. To
avoid this, again, a conservative redistribution of the flux is proposed. In cases where /n

s;i ¼ 0; /n
s;j > 0; hn

i > 0; hn
j > 0 and

Wh/s
i;k < 0 the fluxes are redefined as follows:
Wh/s
j;k ¼ Wh/s

j;k þWh/s
i;k rA

Wh/s
i;k ¼ 0 when /n

s;i ¼ 0; /n
s;j > 0; hn

i > 0; hn
j > 0; Wh/s

i;k < 0
ð47Þ
This situation is equivalent to the generation of negative water depths in wetting/drying advance, and is independent of the
size of the time step used [17]. When the wetting/drying front contains solute the analysis of the equivalent mixed/clean
front is unnecessary as all the variables are nil in one cell. The situation becomes more complicated when mixed/clean fronts
move over a completely wet case, because it is possible to find situations where water flux can cross the associated edge but
solute mass flux cannot. For that reason the correction in (47) is proposed. As in this case the associated cell edge acts
Fig. 5. Initial free surface and water depth profile for the parabolic basin test.

ry of cases for the long wave resonance in a circular parabolic frictionless basin with solute.

Interpolated variable Flux redistribution Coupled system /1 /2 /3

No one Yes Yes f1 f2 f3

No one Yes Yes f1 0 0
No one Yes Yes 0 f2 0
No one Yes Yes 0 0 f3

/1; /2; /3 Yes Yes f1 f2 f3

qx ; qy; /1; /2; /3 Yes Yes f1 f2 f3

No one No Yes f1 f2 f3

h Yes Yes 0 0 0
h; qx ; qy Yes Yes 0 0 0
No one No No f1 f2 f3



J. Murillo et al. / Journal of Computational Physics 228 (2009) 5539–5573 5547
temporally as a solid wall, in order to ensure conservation in the following time step it is necessary to impose a condition of
zero velocity in the normal direction to the cell edge.

If second order is imposed over the conserved variables the final value of the component /s depends on the interpolation
functions used in h and h/s and unrealistic values of solute concentration can appear. The oscillations in the solute concen-
tration can be avoided by reducing locally the scheme to first order but, in presence of strong spatial variations in the water
depth, this technique is overly restrictive and leads to a first order solution. When this option is not desirable, extrapolation
of the solute concentration /s, keeping first order over the water depth, is another possibility, providing the most accurate
results for the solute concentration [18]. Once the interpolation functions are correctly solved, the cell edge redistributions
(46) and (47) are applied to the WJI;k and WIi;k fluxes.
Fig. 6. 3D view of the exact distribution of /1 at time 4T (a), and computed distribution of /1 at time 4T for cases 1, 2 and 5–7 in (b)–(f), respectively.
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3.4. Cell conservative flux redistribution

In the previous section numerical techniques to avoid unrealistic cases and numerical oscillations independent of the
time step chosen have been presented. On the other hand, it has been previously reported that the presence of source terms
reduces the time step size compatible with numerical stability of explicit schemes under certain conditions as compared to
the homogeneous case. The CFL stability condition for an explicit scheme applied to solve a homogeneous conservation law
is governed by the grid size and the eigenvalues of the system. As discussed in [17], for a triangular unstructured grid, this
can be formulated:
Fig. 7

Fig. 9.
(b) and
Dtmax ¼ min DtCFL
k

	 

k¼1;Nedge

DtCFL
k ¼ min

16m63þp

Amin;k

max ~km
k

�� ��h i
lk

8<:
9=; ð48Þ
with Amin;k ¼minðAi;AjÞ and Nedge the number of cell edges in the domain.
. Time step size distribution (logarithmic scale) during the computation of four periods in test 1 for case 1 (black dots) and case 7 (white dots).

Fig. 8. Error in the numerical solution for /1 at time 4T for cases 1, 2 and 5–7.

Contour plot of the exact distribution of /1 at time 4T (a), and computed distribution of /1 at time 4T for options 1 (coupled) and 10 (uncoupled) in
(c), respectively.
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This time step limitation is the main disadvantage of explicit schemes and it is worth trying to avoid further restrictions in
the time step size dictated by, for instance, the presence of relevant source terms. Having splitted the diffusive and reaction
parts, the strategy presented for multi-component transport in this work is based on the redistribution of the updating fluxes
Wi;k allowing the use of the time step in (48). This idea starts by focusing in the evaluation of the negative mass contributions
to a cell, and the value of the maximum allowable time step (48). Given a wet cell i, the contributions from neighbour cells
that extract mass are used to build a reference time step size Dthi

:

Fig. 10
Dthi
¼ � hn

i

Dt
PNE

k¼1W
h
i;k

; Wh
i;k < 0 ð49Þ
. 3D view of the exact distribution of /2 at time 4T (a), and computed distribution of /2 at time 4T for cases 1, 3 and 5–7 in (b)–(f), respectively.
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The same is repeated for the mass conservation equations of all the components h/s and new reference time steps Dth/s;i
are

estimated:
Fig. 12.
(b) and
Dth/s;i
¼ �

h/n
s;i

Dt
PNE

k¼1W
h/n

s;i

i;k

; W
h/s;i

i;k < 0 ð50Þ
It is worth noting that the quantities defined in (49) and (50) are always positive due to the condition on the contributions in
the denominator. A redistribution factor is computed as:
rt;i ¼
Dtv

Dtmax

Dtv ¼ min Dtmax;Dthi
;Dth/1;i

;Dth/2
; . . . ;Dth/p;i

� � ð51Þ
with Dtmax as in (48). When in cell i the ratio rt;i < 1, we propose to redefine the updating fluxes to cells i and j at those k
edges where Wh

k;i < 0 according to:
Wi;k ¼ !1; Wj;k ¼ Wj;k þ !2

Whu
i;k ¼ Whv

i;k ¼ 0
ð52Þ
where
!1 ¼ Wi;krt;i; !2 ¼ Wi;kð1� rt;iÞrA ð53Þ
imposing a condition of zero velocity in the normal direction to the cell edge where Wh
k;i < 0 to preserve conservation in the

following time step. In this technique the flux components are homogeneously redefined in order to ensure a correct bound-
ing of the transported scalars. It is worth remarking that the strategies defined in Section 3.3 are indispensable to apply the
flux conservative redistribution successfully.

In previous works [15] the transport of one single scalar was considered and the effect of the edge redistribution in (47)
was supplied by the cell redistribution in (52). In the context of multivariable transport, if the edge redistribution techniques
(46) and (47) are not observed, it is not possible to avoid negative values of solute for any size of the time step, as the rt;i

factor cannot handle all the variety of possible combinations and the computation fails.
Contour plot of the exact distribution of /2 at time 4T (a), and computed distribution of /2 at time 4T for options 1 (coupled) and 10 (uncoupled) in
(c), respectively.

Fig. 11. Error in the numerical solution for /2 at time 4T for cases 1, 3 and 5–7.
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When moving to the second order approach in (41) the cell redistribution strategy presented in this section can also be
applied to multivariable transport. To do that, it is necessary to observe the results of the analysis of the influence of the non-
conservative terms in the stability region [17,18]. One main conclusion, was that the size of the actual time step in presence
of relevant source terms involves more variables than the ones defined in (48). When analysing systems of Eq. (1) the fol-
lowing edge parameter is additionally relevant:
Fig. 1
ck ¼ minfch; ch/1
; ch/2

; . . . ; ch/3þp
gk ð54Þ
where for any U conserved variable, cU;k is
3. 3D view of the exact distribution of /3 at time 4T (a), and computed distribution of /3 at time 4T for cases 1 and 4–7 in (b)–(f), respectively.
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(b) and

5552 J. Murillo et al. / Journal of Computational Physics 228 (2009) 5539–5573
cU;k ¼
minfUi;Uj; jdUkjg

jdUkj
ð55Þ
This parameter is related to the monotonicity of the initial values in each Riemann problem, and does not affect the stability
in presence of non-conservative products in the case ck ¼ 1. Otherwise, when ck < 1 the time step in (48) must be reduced.
The conservative flux redistribution avoids this problem, but when moving to second order in space, to preserve the optimi-
zation in the size of the time, in those cells where ck < 1 for any k edge, first order is locally imposed for all variables in the
cell.

Also, in second order the techniques in (46) and (47) must be considered over the Wh/s
JI;k fluxes, to avoid time size indepen-

dent problems. It is remarkable that in second order in time and space the maximum time step changes [27], and is given
by
Dtmax ¼
2
3

min DtCFL
k

	 

k¼1;Nedge

DtCFL
k ¼ min

16m63þp

Amin;k

max ~km
k

�� ��h i
lk

8<:
9=; ð56Þ
Finally, it has been previously reported that explicit discretizations of the friction term, unified (upwind) and separated
(pointwise), lead to instabilities in cases of dominant roughness, that can be avoided by reducing the time step in (48) or
the cell size [17,19]. Implicit discretizations of this term have been widely used to overcome this problem, but are unable
to ensure well-balanced steady state solutions. A technique that combines the implicit pointwise and the explicit upwind
friction discretization proposed in [19] is adopted here, leading to computationally efficient simulations by means of an ade-
quate criterion that switches from one to the other whilst remaining under the solely control of the time step condition in
(48).

3.5. Uncoupled formulation for solute transport

Solving solute transport by means of an uncoupled formulation is an option commonly used, that may lead to numerical
issues in some cases, as will be shown later. The system of equations in (1) is divided in two different sub-systems of equa-
tions, one for the mass and momentum shallow water equations
Contour plot of the exact distribution of /3 at time 4T (a), and computed distribution of /3 at time 4T for options 1 (coupled) and 10 (uncoupled) in
(c), respectively.

Fig. 14. Error in the numerical solution for /3 at time 4T for cases 1 and 4–7.
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@U1

@t
þ @F1ðUÞ1

@x
þ @G1ðUÞ1

@x
¼ SðUÞ1 þ ~rD1ðUÞ1 ð57Þ
where U ¼ h hu hvð ÞT and another for the mass conservation of the transported components
@W
@t
þ @F2ðWÞ

@x
þ @G2ðWÞ

@x
¼ ~rD2ðWÞ þ RðWÞ ð58Þ
with W ¼ h/1 h/2 � � � h/p

� �T

The sub-systems are solved independently and sequentially with any of the available methods. In the present work, the
comparisons between the coupled and the uncoupled formulations will be based on the application of the upwind finite vol-
ume methods discussed in previous sections using the reduced Jacobians corresponding to each sub-system. The following
3D view of the exact water level surface at time 4T (a), and computed water level surface at time 4T for cases 1, 5 and 7–9 in (b)–(f), respectively.
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formulation defines the application of the first order upwind scheme to the convective part of sub-system (58) and has been
widely reported [7,10]:
Table 2
L1 and

Option

Explicit
Implici
W�
i ¼Wn

i þ Dt
XNE

k¼1

ð�unÞ�n
k dWk

lk

Ai
ð59Þ
with ð�uÞ� ¼ 1
2 ð�u� j�ujÞ and �u ¼ 1

2 ðui þ ujÞ.
4. Applications

4.1. Long wave resonance in a circular parabolic frictionless basin with solute

The first test case presented is motivated by the necessity of checking the performance of flux redistributions proposed
when using the schemes in (29) and (41) in a problem of transient boundaries dominated by the non conservative terms and
with analytical solution. The analytical solution of a long wave resonating in a circular, frictionless parabolic basin was pre-
sented in [26] for the shallow water equations, and is taken as the basis of our test case. The free surface displacement is
given by
Fig. 18. Detail of the steady state solution for /1 (a) and for /2 (b) using the explicit and the implicit discretization of the reaction terms.

Fig. 17. Error in the numerical solution for hþ z at time 4T for cases 1 and 6–9.

L1 errors for /1 and /2 for 1D convergence to steady state with x variable.

L1ð/1Þ L1ð/1Þ L1ð/1Þ L1ð/2Þ

0.192396 0.013782 0.192396 0.013782
t 0.190070 0.012228 0.190070 0.012228



Fig. 19.
(c) and

Table 3
Summa

Option

1
2
3
4
5
6
7

Table 4
L1 and

Option

1
2
3
4
5
6
7
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fðr; tÞ ¼ fo
ð1� A2Þ1=2

1� A cos xt
� 1� r2

a2

1� A2

ð1� A cos xtÞ2
� 1

 ! !
ð60Þ
and the basin shape is given by
zðr; tÞ ¼ fo 1� r2

A2

� �
ð61Þ
3D contour plot for /1 and /2 at time t ¼ 0 in (a) and (b), respectively. 3D contour plot for the analytical solutions for /1 and /2 at time t ¼ 50 s in
(d), respectively.

ry of numerical options for the 2D unsteady state.

Interpolated variable Reaction discretization Coupled system

No one Explicit Yes
/1; /2 Explicit Yes
qx; qy; /1; /2 Explicit Yes
No one Implicit Yes
/1; /2 Implicit Yes
qx; qy; /1; /2 Implicit Yes
No one Explicit No

L1 errors for /1 and /2 for 2D unsteady state.

L1ð/1Þ L1ð/1Þ L1ð/1Þ L1ð/2Þ

1.222263 0.235186 3.199296 0.684575
0.395466 0.214274 1.116122 0.681365
0.396762 0.214833 1.120822 0.684299
1.222239 0.235184 3.199294 0.684576
0.396025 0.211760 1.116283 0.681492
0.396883 0.215342 1.118067 0.682741
2.127666 0.291585 6.233282 0.723769
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with A ¼ a4 � r4
o

� �
a4 þ r4

o

� �
and x ¼ a�1

ffiffiffiffiffiffiffiffiffiffi
8gfo

p
, where fo is the centre point water depth, r is the distance from the centre

point, a is the radial distance from the centre point to the zero elevation on the shoreline and ro is the distance from the
centre point to the point where the water depth is initially nil. Those values are represented in Fig. 5. The numerical values
used for this test are fo ¼ 20:0 m; ro ¼ 1200 m; a ¼ 1500 m. T ¼ 2px�1 ¼ 237:93 s. The domain is divided in 52,242 unstruc-
tured triangular cells for the comparisons and does not present any adaptation to the bottom surface. The basic test case has
been extended by assuming that the water surface movement transports, in a purely advective form, three initial solute
ðp ¼ 3Þ concentrations. There is no analytical solution for the solute concentration evolution in time but, in absence of dif-
fusion, the solution is provided by the analytical velocity field, hence, for each T oscillation period, the solute concentration
will be:
Fig. 20.
option
/ðr; t ¼ KTÞ ¼ /ðr; t ¼ 0Þ; K ¼ 1; . . . ;1 ð62Þ
To compare exhaustively the performance of the numerical techniques detailed in this work, 10 different numerical cases,
involving different initial solute distributions and different numerical options have been defined. The cases are summarized
in Table 1. In all cases the initial solute distribution for each transported variable is given by the functions
f1 ¼ e �
2r
roð Þ; f 2 ¼ e

2r
roð Þ; f 3 ¼

2 if r < 600
1 if r P 600

�
ð63Þ
or is simply nil in the entire domain. Cases 1–4 have been defined to compare the effect of the conservative redistribution in
the solution, using the first order scheme for that purpose. It is expected that the solutions for the transported scalars remain
identical in all cases, despite the fact of being present in the computation or not. In cases 5 and 6 second order over the trans-
ported scalars and over the transported scalars and the discharges, respectively, is applied using (41) in combination with
the conservative redistribution. Case 7 is the reference case when first order is applied, the conservative flux redistribution
in (52) is not used and the time step size in (48) is reduced until no value of the solute concentration becomes negative. Cases
8 and 9 have been defined to show the performance of the scheme in (41) when interested in preserving the initial water
level surface profile as in case 6. Case 10 uses the uncoupled formulation in (59) for the transported scalars.
3D contour plot of the numerical solution for /1 and /2 at time t ¼ 50 s using option 1 in (a) and (b), respectively, using option 2 in (c) and (d), using
7 in (e) and (f), respectively.
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Fig. 6 shows 3D views of (a) the exact distribution of /1 at time 4T , and (b)–(f) computed distribution of /1 at time 4T for
cases 1, 2 and 5–7, respectively. From Fig. 6(b), (c) and (f) it can be observed that the simulation of the transport of three
mutually independent components provides the same result as the simulation of that single component alone both when
the flux redistribution is performed and when it is not. However, the flux redistribution helps in ensuring stability at higher
time step sizes, as shown in Fig. 7. Fig. 6(d) and (e) show that there is a gain in accuracy when moving to second order. De-
spite the strong variation of the wet computational domain during the simulation, the solution preserves the symmetry of
the original solution. The deviation from the exact solution, at a row of points along a radius after 4 periods, is quantitatively
compared in Fig. 8, where the difference between the numerical and the exact solution is plotted. Cases 1, 2 and 7 provide
the same error. The extra computational effort made when involving interpolation techniques for the velocity in case 6 is not
justified in this case. The influence of the coupling in the system can be observed by comparing options 1 and 10. This is
displayed on Fig. 9 for the component /1 together with the exact solution at t ¼ 4T . The solution from the uncoupled for-
mulation is not bounded and does not follow the correct pattern at any time.

Fig. 10 are 3D views of (a) the exact distribution of /2 at time 4T and (b)–(f) the computed distribution of /2 at time 4T for
options 1, 3 and 5–7, respectively. The difference between the numerical and the exact solution is plotted in Fig. 11. Cases 1,
3 and 7 provide the same error. The extra computational effort made involving interpolation techniques for the velocity in
case 6 is not justified in this case. There is a gain in accuracy when moving to second order but again it is not worth enforcing
second order in the discharges as far as the error in concentration is concerned. Fig. 12(a) is the contour plot of the exact
distribution of /2, at time 4T and Fig. 12(b) and (c) are the corresponding numerical solutions computed with options 1
and 10, respectively.

Fig. 13 are 3D views of the exact distribution of /3 at time 4T (a), and computed distribution of /3 for options 1, and 4–7 in
(b)–(f), respectively, at the same time. The difference between the numerical and the exact solution is plotted in Fig. 14.
Fig. 15(a) shows the contour plot of the exact distribution of /3 at time 4T, and the computed distributions of this variable
for options 1 and 10 are represented in 15(b) and (c), respectively.

Fig. 16 complements all the previous and shows the comparison of the exact and computed water level surfaces at time
t ¼ 4T in 3D view. All the computed water surfaces are smooth and symmetric. Fig. 17 is a quantitative comparison of the
exact solution and the numerical water surface level solutions. Cases 1 and 7 provide the same error, close to that obtained in
case 6, reinforcing that second order over the discharges does not improve the water level solution. There is a gain in accu-
racy when moving to second order but it would be enough to use second order over the water depth.

4.2. Application to solute transport with reaction

The second test case is intended to focus on the reactive source terms. For that purpose, the transport of two interdepen-
dent components ðp ¼ 2Þ is formulated defining R and D as follows:
Fig. 21. (a) Experimental channel for dividing flow and (b) data collection sections.

Table 5
Summary of computational options in the 90� dividing open channel flow.

Option Interpolation variable Turbulence model Gradient discretization

1 No one No Centred plane
2 No one Yes Centred plane
3 qx; qy Yes Centred plane
4 j; �; qx; qy Yes Centred plane
5 No one Yes Normal discretization
6 No one Yes Max. gradient plane
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measur
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R ¼ 0 0 0 �xh/1 xh/2ð ÞT ; D ¼ 0 ð64Þ
and two situations are identified.

4.2.1. 1D convergence to steady state with x variable
The exact solution for the solute distributions in steady state conditions is obtained from the solute transport equation

written as:
~rhu/1 ¼ �xh/1;
~rhu/2 ¼ xh/1 ð65Þ
To isolate the effect of the discretization of the reaction terms, a 1D flat and frictionless channel, with uniform and con-
stant flow values, ho and qo, and length L is considered. Eq. (65) reduces to
u~r/1 ¼ �x/1; u~r/2 ¼ x/1 ð66Þ
If the boundary conditions for the scalars transported are /1ðx ¼ 0Þ ¼ v and /2ðx ¼ 0Þ ¼ 1� v and
xðxÞ ¼ xo sin
px
L

� �
ð67Þ
the steady state solution is
/ðxÞ ¼ ve �
xoL
up 1�cos 2px

Lð Þð Þð Þ ð68Þ
The computational problem is defined using L ¼ 100 m; ho ¼ 1 m; qo ¼ 1 m2=s; v ¼ 1; xo ¼ 0:1 s�1 and initial conditions
/1ðx; t ¼ 0Þ ¼ /2ðx; t ¼ 0Þ ¼ 0. The upstream and downstream imposed conditions are
qðx ¼ 0Þ ¼ qo; /1ðx ¼ 0Þ ¼ v; /2ðx ¼ 0Þ ¼ 1� v; hðx ¼ LÞ ¼ ho ð69Þ
. Velocity u measured at different water depths ðz=B ¼ 0:011; z=B ¼ 0:033; z=B ¼ 0:098; z=B ¼ 0:164; z=B ¼ 0:229Þ, depth average of the velocity
ements and computed velocity in options 1 and 2.
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Table 2 displays the L1 and L1 errors for /1 and /2 at steady state, showing that both the explicit and implicit discretizations
of the reaction terms provide the same accuracy in this case. Fig. 18 is a detail of the steady state solution for /1 (a) and for /2

(b) using the explicit and implicit schemes. This example involves a smooth solution over a flat bottom with uniform free
surface, hence, both the coupled and uncoupled formulation lead to the same results.

4.2.2. 2D unsteady transport
The second case of transport with reaction considers unsteady solutions. From the solute transport equation and the

water mass conservation, the material derivatives can be written:
Fig. 23.
measur
d/1

dt
¼ �x/1;

dx
dt
¼ u

d/2

dt
¼ x/1;

dx
dt
¼ v

ð70Þ
The test case is concerned with the advection and reaction of an initial solute distribution by means of the velocity field cor-
responding to a non-uniform steady flow characterized by a bi-linear bed variation. The exact water depth and bottom level
distributions corresponding to that situation are:
hðx; yÞ ¼ aþ qxxþ qyy; zðx; yÞ ¼ � 1
2g

q2
x þ q2

y þ 2gh3

h2 þ 3
7
jqxjn2

ffiffiffi
2
p

h7=3 ð71Þ
qx ¼ qy ¼ cte, which means that the solute concentrations vary along the characteristic curves given by
dx
dt
¼ qx

hðx; yÞ ;
dy
dt
¼

qy

hðx; yÞ ð72Þ
Assuming that at the initial time to the solute distributions hold
/1ðxo; yo; toÞ þ /2ðxo; yo; toÞ ¼ v ð73Þ
Velocity v measured at different water depths ðz=B ¼ 0:011; z=B ¼ 0:033; z=B ¼ 0:098; z=B ¼ 0:164; z=B ¼ 0:229Þ, depth average of the velocity
ements and computed velocity in options 1 and 2.
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the concentrations at a future time to þ T change along the space according to:
/1ðx0; y0; to þ TÞ ¼ /1ðxo; yo; toÞe�xT

/2ðx0; y0; to þ TÞ ¼ v� /1ðxo; yo; toÞe�xT
ð74Þ
where
x0ðto þ TÞ ¼ xoðtoÞ þ
Z toþT

to

udt; y0ðto þ TÞ ¼ yoðtoÞ þ
Z toþT

to

v dt ð75Þ
that, using the field characteristics in (71) become
x0ðto þ TÞ ¼ �Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 2BC

q� �
B�1

y0ðto þ TÞ ¼ yo þ qyq�1
x �Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 2BC

q� �
B�1 � xo

� � ð76Þ
with A ¼ aþ qyyo � q2
yq�1

x xo; A ¼ qx þ q2
yq�1

x ; C ¼ Axo þ 1
2 Bx2

o þ qxðto þ TÞ.
The example presented assumes a diagonal discharge with values qx ¼ qy ¼ 0:1 m2=s, a = 0.5 m, roughness n ¼

0:03 s m�1=3 and v ¼ 1, over a squared domain 10� 10 m, and has been computed using 52,242 unstructured triangular cells.
The boundary conditions are, at the upstream sides (south and west in the squared domain), the unit discharges and, at
the downstream sides (north and east), the water depth. No diffusion is included. The initial condition for the transported
scalars is
/1ðx; y; toÞ ¼
sin 2px

L

� �
sin 2py

L

� ��� �� if 1 < x < 6 and 1 < y < 6
0 otherwise

(
ð77Þ
Fig. 24. Depth averaged measured velocity u and computed velocity in options 2 and 3.
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Fig. 19 is a 3D plot of the initial and exact solution for /1 and /2 at T ¼ 50 s. This test case has been simulated with
seven different computational options that are listed in Table 3 in order to compare their relative performances with
the exact solution. Options 1–3 involve an explicit treatment of the reaction term (32) while in options 4–6 an implicit
treatment (32) is retained. In option 7 the uncoupled formulation in (59) for solute transport is applied. Table 4 summa-
rizes the L1 and L1 errors for /1 and /2 in this case at time T ¼ 50 s. The main conclusion is that the uncoupled formu-
lation leads to the most important error. This could even be confused with an excessive numerical damping and could
lead to the wrong conclusion that a more accurate advection method is required. Apart from that, within the list of coupled
options, second order in the concentrations is effective and the explicit or implicit discretization of the reaction terms is
equally efficient. Fig. 20 show 3D contour plots of the numerical solution for /1 and /2 at time T ¼ 50 s using option 1 in
(a) and (b), respectively, using option 2 in (c) and (d), respectively, and using option 7 in (e) and (f), respectively. It is
worth remarking that all options have been run including and excluding the conservative flux redistribution to evidence
if this technique gets involved unnecessarily. No results are plotted as no difference has been found when comparing the
results of both cases.
4.3. Application to turbulence modelling

The multi-component transport can find a field of application in the formulation of the depth averaged j—� turbulence
model. Therefore, following [21] system (1) with p ¼ 2; /1 ¼ j; /2 ¼ �, being j the turbulent kinetic energy and � the dis-
sipation rate, is rewritten using the diffusion matrices
Ku ¼ Kv ¼
mþ mt 0

0 mþ mt

 !

Kj ¼
mþ mt

rj
0

0 mþ mt
rj

0@ 1A; K� ¼
mþ mt

r� 0

0 mþ mt
r�

0@ 1A ð78Þ
Fig. 25. Depth averaged measured velocity v and computed velocity in options 2 and 3.
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The reaction term R is divided in its positive, R1, and negative, R2, terms
R1 ¼ 0 0 0 hPj þ hPjv hc1�
�
j Pj þ hP�;v

� �
R2 ¼ 0 0 0 �h� �hc2�

�2

j

� �
mt ¼ cl

j2

�
; Pk ¼ 2mt S2

uu þ S2
uv þ S2

vv

� �
; Pkv ¼

cku3
f

h

ck ¼
1

c1=2
f

; P�v ¼ c�
u4

f

h2 ; c� ¼ 3:6
c2�c

1=2
l

c3=4
f

ð79Þ
where cm ¼ 0:09; c�1 ¼ 1:44; c�2 ¼ 1:92; rj ¼ 1:0; r� ¼ 1:31 and the bed friction term cf is defined as
cf ¼ g
n2

h1=3 ¼
u2

f

juj ð80Þ
and the strain rate tensor components are
Suu ¼
@u
@x

 �
; Suv ¼

1
2
@u
@y
þ @v
@x

 �
; Svv ¼

@v
@y

 �
ð81Þ
The first order coupled formulation is applied according to the following algorithm:
U�i ¼ Un
i þ Dt

XNE

k¼1

Wk;i

U��i ¼ U�i þ DtR�i;1
U���i ¼ U�i þ DtR��i;2
Unþ1

i ¼ U���i þ DtDnþ1
i

ð82Þ
where the term Ri;1 is computed following the explicit formulation in (32) and the term Ri;2 is computed using the implicit
formulation in (33). A similar sequence is used for the second order coupled formulation. The estimation of the horizontal
Fig. 26. Depth averaged measured velocity v and computed velocity in options 2, 5 and 6.
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shear stress involves the computation of the gradient associated to the velocity components. This step is of primary impor-
tance when using turbulence models to evaluate correctly its effect in the smoothing of recirculating flows. In the case of
triangular meshes the evaluation of the velocity gradients can be done by constructing interpolation planes from the infor-
mation stored in the cell of interest and the information stored in the neighbouring cells [7]. One possibility is to use only the
information stored in the surrounding cells, as in the LCD technique[1], defining the plane dj1j2j3 , that for sake of clarity will
be called centred plane. In the context of interpolation techniques this option provides a small increment in the accuracy
when moving to second order approach. For that reason it may seem necessary to move to more complex approximations.
For instance, another possibility is to select the plane with maximum slope among the four planes that can be defineddij2j3 ;

dj1ij3 ;
dj1j2i and dj1j2j3 as in the MLG technique[1], that we will refer to as maximum gradient plane. Instead, a technique

able to handle both rectangular and triangular meshes is proposed
Suv i
¼ 1

2

XNE

k¼1

duny

dn

� � ! XNE

k¼1

jnyj
 !�1

þ 1
2

XNE

k¼1

dvnx

dn

� � ! XNE

k¼1

jnxj
 !�1

Suui
¼

XNE

k¼1

dunx

dn

� � ! XNE

k¼1

jnxj
 !�1

Svv i
¼

XNE

k¼1

dvny

dn

� � ! XNE

k¼1

jnyj
 !�1

ð83Þ
Fig. 28. Channel configuration and cross-section in the main channel. Dimensions in meters.

Fig. 27. Numerical results for the module of the velocity, in options 1–6 in (a)–(f), respectively.



Fig. 31. Module of the surface velocity measured at t ¼ 1 s (a), 3 s (b), 5 s (c) and 5 s (d).

Fig. 29. Sketch of the location of the gauging points where the velocity was measured.

Table 6
Number of cells for the meshes in the dam-break flow case.

Structured M1;1 M1;2 M1;3 M1;4 M1;5

12,212 50,262 107,336 505,262 1,011,396

Unstructured M2;1 M2;2 M2;3 M2;4 M2;5

12,726 51,172 101,715 490,004 1,031,532

Fig. 30. Detail of meshes M1;3 (right) and M2;3 (left).
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that, in the case of structured quadrangular meshes, provides second order in space, often used in finite difference methods.
This technique will be referred to as normal edge discretization.

4.3.1. 90� dividing flow in open channels
The simulations based on the turbulence model are tested using experimental data. The experiments, as described in [20],

where performed in a 90� dividing flow horizontal channel with the dimensions indicated in Fig. 21(a). The main channel and
the branch channel are 0.305 m high and 0.610 m wide. They are made of 12.7 mm Plexiglas plates and rest on a steel frame.
The flow enters the main channel after passing through a transition that contains screens and honey combs. This ensures
properly developed flow with low turbulence in the flume. At the end of the main and branch channels, control gates are
placed to regulate the flow depth. The maximum discharge error was estimated to be 3%. A Laser Doppler Anemometry
(LDA) unit was used to measure the mean velocity components of the flow fields. The error of the velocity was estimated
to be 1%. The coordinate system used to record data is shown in Fig. 21(b). Measurements were always made only after stea-
dy state flow conditions were attained.

The selected experiments correspond to an inlet discharge Q u ¼ 0:047 m3=s in the main channel. This is imposed as up-
stream boundary condition in the simulation while the water level surface h ¼ 0:184 m is imposed downstream of the main
channel and Qb ¼ 0:07 m3=s downstream of the branch channel. The simulation was performed on an unstructured mesh
with 47,395 cells using a Manning coefficient n ¼ 0:012 s m�1=3.

Table 5 summarizes the numerical options used in this case. In option 1 the numerical solution is computed using the
plain shallow water equations. In the rest of the options the turbulence model in (82) is included. Options 2–4 are computed
using the normal edge discretization, using first order in option 2, and using second order over the discharges and the dis-
charges and the transported scalars in 3 and 4, respectively. Options 5 and 6 are computed using the first order approach
with turbulence using the centred plane and maximum gradient plane techniques, respectively.

Fig. 22 is the plot of the velocity component u measured at different water depths ðz=B ¼ 0:011; z=B ¼ 0:033; z=B ¼
0:098; z=B ¼ 0:164; z=B ¼ 0:229Þ, the depth average of the measured u velocity and the computed depth averaged velocity
using options 1 and 2 at different cross-sections. Fig. 23 is the corresponding plot for the velocity component v. These results
indicate that the turbulence model produces velocities closer to the experimental depth average velocity than the plain shal-
low water model due to the smoothing effect in the recirculation areas.

Figs. 24 and 25 are the corresponding plots for the u and v components, respectively, using options 2 and 3. The velocities
are only plotted in the secondary branch, as in the other options no appreciable differences are observed. These figures make
clear that second order does not provide a benefit over first order as far as the velocities are concerned.

It is well known that the j—�method does not work well under some flow conditions [9]. When stagnation points appear,
as in this case near the corner, the production of turbulent kinetic energy is over-predicted, given values of j much larger
than the measured ones. For options 2–4 the normal edge discretization technique generates enough dissipation, increasing
the quality of the results. The centred plane technique provides similar levels of turbulence. On the other hand an excessive
Fig. 32. Module of the depth averaged velocity computed using the j—� turbulence model at t ¼ 1 s (a), 3 s (b), 5 s (c) and 15 s (d). Grid M1;5.
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amount of diffusion is included in the solution when using the maximum gradient plane technique, as Fig. 26 shows. This can
lead to the wrong conclusion that the use of second order methods would be necessary to avoid the excessive diffusion of
velocity maps.

Fig. 27 shows the contour plots for the module of the velocity for options from 1 to 6 in (a) to (f), respectively. The shape of
the recirculation area calculated by any of the options 2–6 is much smoother than the solution from the shallow water model
(option 1). However, no significant differences are introduced in the solutions by enforcing second order in the discharges or
the transported scalars. The results from the uncoupled model are not shown because they are identical in this case of
smooth water surface.
Fig. 34. Kinetic turbulent energy computed at t ¼ 3 s (a) and (c) and t ¼ 5 s (b) and (d) using the coupled formulation (a,b) and the uncoupled formulation
(c,d). Grid M1;5.

Fig. 33. Module of the depth averaged velocity computed using the j—� turbulence model at t ¼ 1 s (a), 3 s (b), 5 s (c) and 15 s (d). Grid M2;5.
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4.3.2. Dam-break flow against an isolated obstacle
In this numerical test case the flow around an obstacle induced by a dam-break is simulated. It has been chosen to study

the behaviour of the solutions in presence of strong gradients in the conserved variables. The experiments were carried out
in the Civil Engineering Laboratory of the Universit Catholique de Louvain (UCL) in Belgium [25]. The set-up consists of a
reservoir connected to a symmetrical trapezoidal channel (the channel dimensions and shape are indicated in Fig. 28). A gate
separates the reservoir from the channel where a rectangular obstacle 0.40 m wide and 0.80 m long is inserted. The channel
has a nil slope and a Manning friction coefficient was estimated to n ¼ 0:010 s m1=3. Initial conditions for the experiment are
a uniform water depth of 0.40 m in the reservoir and a uniform depth of 0.02 m in the channel. It is assumed that the down-
stream boundary does not influence the flow during the experiment. The time evolution of the velocity was measured using
resistive gauges and Acoustic Doppler Velocimeters (ADV) at a height of 3.6 cm above the channel bed at several gauging
stations. Their locations are shown in Fig. 29. Also, the surface velocity field in the area around the building was registered
using digital imaging techniques. For more details see [25].

The numerical domain was discretized using two kinds of triangular grids, structured ðM1Þ and unstructured ðM2Þ, of five
different degree of refinement in order to analyze the sensitivity of the numerical results to these features. Table 6 contains
the notation used to refer to all the grids used and the number of cells involved in every case. Fig. 30 shows a zoom view of
the discretization of the area near the obstacle.

Fig. 31 are plots of the digital imaging measured surface velocity at t = 1, 3, 5 and 15 s. Fig. 32 are plots of the computed
module of depth averaged velocity on the finest structured grid M1;5 using the j—� turbulence model at t = 1 s (a), 3 s (b), 5 s
(c) and 15 s (d). Fig. 33 are the equivalent plots on the finest unstructured grid Mð2;5Þ. All of them show a qualitative agree-
ment between experimental and computational patterns.

Fig. 34 are plots of the kinetic turbulent energy computed at t = 3 s (a) and (c) and t = 5 s (b) and (d) using the coupled
formulation (a,b) and the uncoupled formulation (c,d) on grid M1;5. Fig. 35 shows again the kinetic turbulent energy com-
puted with the coupled formulation at t = 3 s (a) and (c) and t = 5 s (b) and (d) using the two different grids M1;5 (a,b) and M2;5

(c,d). The coupled formulation provides a kinetic turbulent energy distribution coherent with the hydraulic jumps location
whilst the uncoupled formulation leads to the generation of an excessive amount of kinetic turbulent energy in some re-
gions. The influence of the kind of grid on the quality of the results is small but the particular discretization chosen (83)
for the turbulent kinetic energy production terms is sensitive. As a consequence, the results on the structured grid show
sharper profiles of this variable in the regions of strong velocity gradients.

Fig. 36 displays the comparisons of the measured u and v velocity components and the corresponding computed variables
using the shallow water model on the structured grids. The plots represent time evolution of these variables at four gauge
locations (probes G2–G5) and the numerical results from the five meshes are shown. The plots corresponding to probe G2
indicate that the shock location is sensitive to the grid refinement chosen. The behaviour of the solutions at probes G3 and
G4 is rather indifferent to the grid refinement. The velocities at probe G5, located at the wake of the obstacle, follow an oscil-
latory time evolution. The numerical solutions obtained at this point are very sensitive to the grid refinement. In general, all
the grids used predict oscillatory velocities of different amplitude, being the results from the finest grid the closest to the
experimental data.
Fig. 35. Kinetic turbulent energy computed with the coupled formulation at t ¼ 3 s (a) and (c) and t ¼ 5 s (b) and (d) using M1;5 (a,b) and M2;5 (c,d).
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Fig. 37 displays the comparisons of the measured u and v velocity components and the corresponding computed variables
using the j—� shallow water model on the structured grids. The plots represent the time evolution at the same gauge loca-
tions (probes G2–G5) and the numerical results from the five meshes are shown. The plots corresponding to probe G2 indi-
cate that the shock location tends to be better predicted with most of the grids used. The behaviour of the solutions at probes
Fig. 36. Measured u and v velocities and shallow water computed velocities.
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G3 and G4 is almost identical to the results with the plain shallow water model. The oscillations predicted for the velocities
at probe G5 are now smoothed with damped extremes.

Fig. 38 displays the comparisons of the measured u and v velocity components and the corresponding computed variables
using the shallow water model on the unstructured grids of different number of cells. The plots corresponding to probes G2–
G4 are almost identical to those obtained on the other type of mesh except for the coarsest grid. The numerical velocities at
Fig. 37. Measured u and v velocities and j—� shallow water computed velocities.
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probe G5, follow an oscillatory pattern again and display a high sensitivity to the grid refinement. The detailed time evolu-
tion of the velocities at this location is different from the evolution predicted by the computation on the structured grids.

Fig. 39 displays the comparisons of the measured u and v velocity components and the corresponding computed variables
using the j—� shallow water model on the unstructured grids. The most noticeable feature is that the time evolution of the
Fig. 38. Measured u and v velocities and shallow water computed velocities.
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velocities at probe G5 is now very similar to the tendency predicted by the computation on the structured grids. This can be
interpreted by the damping effect of the turbulent viscosity introduced by the model that is of the same order in both types
of grid.

In general, there is not a good agreement between experimental data and numerical results even with the finest mesh. A
good mean behaviour for gauge locations 3 and 4 can be observed from all the approaches. The location G5 is the zone of
Fig. 39. Measured u and v velocities and j—� shallow water computed velocities.
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high turbulence and the j—� shallow water model does not help to enhance the quality of the results over the plain shallow
water solution.

5. Conclusions

The extension of a finite volume model, suitable for unsteady shallow water over dry irregular beds and able to preserve
the C-property with non-zero velocity steady states, to more general problems involving multi-component transport has
been presented and several numerical options have been proposed. The method is designed to work either on structured
or unstructured triangular grids. The model, under different computational options, has been validated using test cases with
analytical solutions as well as laboratory measurements in order to evaluate their relative performance. The main conclu-
sions that can be drawn from these are:

� In absence of diffusion and reaction, the multi-component advection by an unsteady flow over variable bed requires a cou-
pled formulation of the mass and momentum flow dynamics and mass of the transported components in order to achieve
a conservative tracking of the solute fronts. Uncoupled resolution of the system leads to non-conservative, incorrect
results.

� In this context, the coupled formulation is not sufficient to preserve monotone solutions in the primitive concentration
variables. This can only be achieved by means of a systematic control on the updating quantities.

� The technique for conservative flux redistribution to overcome the time step size restrictions induced by the source terms
of the conservation laws can be successfully used in multi-component transport. The results obtained are identical to
those that could be obtained at a higher computational cost.

� In cases of multi-component transport with reaction terms, the uncoupled formulation is only valid when there are not
gradients in the water depth variable. Otherwise, the numerical error introduced by this formulation can be misinter-
preted as an excessive numerical smearing.

� When solving a complex dynamic problem involving scalar transport, production and extinction such as a depth averaged
j—� turbulence model, the numerical approximation used may be of utmost importance. For steady flow with uniform or
nearly uniform surface level, both coupled and uncoupled formulations provide similar results and both first and second
order methods furnish similar degree of accuracy. For unsteady flow with rapidly varying water surface levels, the uncou-
pled formulation does not provide correct results. The consequences of being careless in the choice of the numerical tech-
nique can be misleading and obscure the actual necessity of using the turbulence model. The coupled formulation of the
j—� shallow water model has proved less sensitive to the type of grid used than the plain shallow water model for the
prediction of the velocities.
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